

Accepted Manuscript

Implementation of a systematic culturing program to monitor efficacy of endoscope reprocessing: outcomes and costs

Gene K. Ma, David A. Pegues, Michael L. Kochman, Kevin Alby, Neil O. Fishman, Marianne Saunders, Carolyn Grous, Daniel T. Dempsey, Gregory G. Ginsberg

PII: S0016-5107(17)31883-7

DOI: [10.1016/j.gie.2017.05.001](https://doi.org/10.1016/j.gie.2017.05.001)

Reference: YMGE 10563

To appear in: *Gastrointestinal Endoscopy*

Received Date: 23 December 2016

Accepted Date: 1 May 2017

Please cite this article as: Ma GK, Pegues DA, Kochman ML, Alby K, Fishman NO, Saunders M, Grous C, Dempsey DT, Ginsberg GG, Implementation of a systematic culturing program to monitor efficacy of endoscope reprocessing: outcomes and costs, *Gastrointestinal Endoscopy* (2017), doi: 10.1016/j.gie.2017.05.001.

This is a PDF file of an unedited manuscript that has been accepted for publication. As a service to our customers we are providing this early version of the manuscript. The manuscript will undergo copyediting, typesetting, and review of the resulting proof before it is published in its final form. Please note that during the production process errors may be discovered which could affect the content, and all legal disclaimers that apply to the journal pertain.

Implementation of a systematic culturing program to monitor efficacy of endoscope reprocessing: outcomes and costs

Gene K. Ma,¹ David A. Pegues,² Michael L. Kochman,¹ Kevin Alby,³ Neil O. Fishman,² Marianne Saunders,⁴ Carolyn Grous,⁴ Daniel T. Dempsey,⁴ Gregory G. Ginsberg¹

¹Gastroenterology Division, Department of Medicine, University of Pennsylvania Perelman School of Medicine, Philadelphia, PA

²Infectious Diseases Division, Department of Medicine, University of Pennsylvania Perelman School of Medicine, Philadelphia, PA

³Department of Pathology and Laboratory Medicine, University of Pennsylvania Perelman School of Medicine, Philadelphia, PA

⁴Perioperative Services, Hospital of the University of Pennsylvania, Philadelphia, PA

Corresponding author:

Gene K. Ma, MD

3400 Civic Center Boulevard

PCAM South Pavilion, 7th Floor

Philadelphia, PA 19104

Email: gene.ma@uphs.upenn.edu

Phone: 267-324-7651

Author Contributions:

Gene K. Ma: Conception and design, analysis and interpretation of data, drafting of the article, critical revision, final approval of article

David A. Pegues: Analysis and interpretation of data, critical revision, final approval of article

Michael L. Kochman: Conception and design, analysis and interpretation of data, critical revision, final approval of article

Kevin Alby: Analysis and interpretation of data, critical revision, final approval of article

Neil O. Fishman: Analysis and interpretation of data, critical revision, final approval of article

Marianne Saunders: Analysis and interpretation of data, critical revision, final approval of article

Carolyn Grous: Analysis and interpretation of data, critical revision, final approval of article

Daniel T. Dempsey: Analysis and interpretation of data, critical revision, final approval of article

Gregory G. Ginsberg: Conception and design, analysis and interpretation of data, drafting of the article, critical revision, final approval of article

1 **ABSTRACT**

2

3 **Background and Aims:**

4 In 2015, the U.S. Food and Drug Administration and Centers for Disease Control and
5 Prevention (CDC) issued guidance for duodenoscope culturing and reprocessing in
6 response to outbreaks of carbapenem-resistant *Enterobacteriaceae* (CRE) duodenoscope-
7 related infections. Based on this guidance, we implemented best practices for reprocessing
8 and developed a systematic process for culturing endoscopes with elevator levers. The aim
9 of this study is to report the outcomes and direct costs of this program.

10

11 **Methods:**

12 First, clinical microbiology data from 2011 to 2014 was retrospectively reviewed to assess
13 for possible elevator lever equipped endoscope-related CRE infections. Second, a program
14 to systematically culture elevator lever equipped endoscopes was implemented. Each week
15 about 25% of the inventory of elevator lever equipped endoscopes is cultured based on the
16 CDC guidelines. If any cultures return bacterial growth, the endoscope is quarantined
17 pending repeat culturing. Costs of the program, including staff time and supplies, were
18 then calculated.

19

20 **Results:**

21 From 2011 to 2014, none of 17 patients with documented CRE infection had undergone
22 endoscopic retrograde cholangiopancreatography or endoscopic ultrasound in the 36
23 months prior. From June 2015 to September 2016, 285 cultures were performed. 3 (1.1%)
24 had bacterial growth, 2 with skin contaminants and 1 with an oral contaminant. The
25 associated endoscopes were quarantined and reprocessed, and repeat cultures were
26 negative. The total estimated cost of our program for an inventory of 20 elevator lever-
27 equipped endoscopes is \$30,429.60 per year (\$1,521.48 per endoscope).

28

29 **Conclusions:**

30 This 16-month evaluation of a systematic endoscope culturing program identified a low
31 rate of positive cultures after elevator lever endoscope reprocessing. All positive cultures
32 were with non-enteric microorganisms. The program was of modest cost and identified
33 reprocessing procedures that may have led to a low rate of positive cultures.

34 **Keywords:**
35 elevator lever equipped endoscopes; carbapenem-resistant *Enterobacteriaceae*;
36 healthcare-associated infections; costs

37

38 **INTRODUCTION**

39 Since 2008, multiple outbreaks of carbapenem-resistant *Enterobacteriaceae* (CRE)
40 duodenoscope-related infections have been reported.¹⁻³ As a multidrug-resistant organism,
41 CRE can cause serious infections with limited treatment options and a resultant high
42 mortality.⁴ Duodenoscopes possess an elevator mechanism that allows for advanced
43 endoscopic maneuvers but pose a challenge for reprocessing and decontamination. Linear
44 array echoendoscopes (LAEs) are also equipped with an elevator lever that facilitates
45 diagnostic and therapeutic maneuvers and have also been shown to be at risk for persistent
46 bacterial contamination.⁵

47 In 2015, the U.S. Food and Drug Administration (FDA) and Centers for Disease
48 Control and Prevention (CDC) issued guidances for duodenoscope culturing and
49 reprocessing in response to these outbreaks.⁶⁻⁸ These guidances noted that routine
50 culturing could be considered to assess adequacy of reprocessing; however, the frequency
51 of culturing was not specified. Furthermore, the American Society for Gastrointestinal
52 Endoscopy (ASGE) and the American Gastroenterological Association (AGA) provided
53 recommendations, which included the periodic culturing of elevator lever-equipped
54 endoscopes.^{9,10} Multiple different strategies to prevent duodenoscope-related
55 transmission of infection have been proposed, including quarantine protocols, different
56 culturing methods and frequencies, gas sterilization with ethylene oxide, and double
57 reprocessing cycles.^{9,11-13} However, the effectiveness of these programs as well as their
58 financial implications remain unclear.

59 A multidisciplinary process for systematic sampling and culturing of elevator lever
60 equipped endoscopes was developed and implemented at our institution in June 2015. The

61 aims of this study are to assess if prior known CRE infections were potentially associated
62 with procedures using elevator lever equipped endoscopes and to assess the effectiveness
63 of this culturing program and the costs associated with its implementation.

64 **METHODS**

65 *Setting*

66 Penn Medicine is comprised of, among other entities, 4 hospitals with 2,503 hospital
67 beds, ranging from community to quaternary care. An average of 2,300 endoscopic
68 procedures using elevator lever-equipped endoscopes are performed annually. Informed
69 consent for procedures with elevator lever equipped endoscopes includes education
70 regarding the possible risks of infection during the procedure. The risk of CRE infection is
71 not directly addressed routinely.

72

73 *Best Practices*

74 Best practices for endoscopic reprocessing were implemented in March 2015 and
75 included standard reprocessing procedures according to revised manufacturer's
76 instructions for use recommendations. These recommendations include a goal to minimize
77 the time between reprocessing steps to minimize the opportunity for biofilm development.
78 We modified these recommendations to include 1 hour goals for the completion of the
79 following steps: completion of manual cleaning after completion of bedside cleaning and
80 initiation of automated endoscope reprocessing after completion of manual cleaning. Once
81 an endoscopic procedure is completed, the technician performs an initial cleaning with
82 wiping of the insertion tube, immersion in clean water with an air-water channel cleaning
83 adapter, and suctioning of an enzymatic cleaner while in the endoscopy room. After

84 completion of this step, the endoscope is transported to the reprocessing area; the
85 endoscope is then scanned, initiating a 1-hour countdown during which time the
86 endoscope must have completed a manufacturer-recommended manual clean including
87 brushing and flushing of internal channels, which includes brushing of the forceps elevator,
88 elevator recess, and guidewire-locking groove in both the open and closed positions.¹⁴ For
89 elevator lever equipped endoscopes, 2 individuals complete the manual clean (one
90 performing the cleaning and the other observing for quality control). Once the manual
91 clean is completed, the endoscope is scanned to end the first countdown and to start a
92 second one-hour countdown, during which time the endoscope must have begun
93 automated endoscope reprocessing. The endoscopes are placed into an Olympus OER-Pro
94 for high-level disinfection using either 6.8% peracetic acid (Acecide C) or 3.4%
95 glutaraldehyde (Aldahol 1.8) following the manufacturer's instructions for use. After
96 completion, the endoscopes are air dried using compressed medical air to dry all inner
97 channels, the exterior is also dried using a lint-free cloth. The endoscopes are then stored in
98 an air-ventilated cabinet to help remove any remaining moisture. The proportion of
99 endoscopes meeting these 1-hour timeframes is automatically registered and reviewed on
100 a weekly basis to assess adherence and opportunities for improvement with no direct
101 interventions for individual endoscopes that did not meet the one-hour timeframes
102 (Supplemental Figure 1). Data were used in aggregate to improve systems processes to
103 increase compliance with the 1-hour timeframes.

104

105 *Review of microbiology data*

106 To determine if procedures using elevator lever equipped endoscopes were
107 associated with transmission of CRE, a retrospective review of microbiology data for the
108 period 2011 to 2014 was performed to identify any patients with CDC National Healthcare
109 Safety Network reported CRE blood or abdominal infections who had undergone a
110 procedure with an elevator lever-equipped endoscope in the prior 36 months.

111

112 *Endoscope culturing process*

113 A multidisciplinary group including physicians, nurses, and technicians from
114 gastroenterology, infectious diseases, laboratory medicine, and perioperative services
115 designed a program to prospectively identify elevator lever equipped endoscopes
116 harboring infection in the absence of evidence of prior scope-related transmission events.
117 Beginning in May 2015, once per week (preferentially on Fridays) approximately 25% of
118 the inventory of elevator lever equipped endoscopes were cultured using a modification of
119 the CDC interim guideline.⁷ Each endoscope was cultured once monthly, and the schedule
120 for culturing was based on convenience depending on scheduled volume. Endoscopes
121 could be cultured even if not used during the prior week. The culturing process involved
122 brushing of the elevator mechanism and channel and also flushing of the biopsy channel.
123 Two nurses or operating room technicians, who have been trained to perform the culturing
124 procedure, completed the process using aseptic technique (Supplemental Table 1). After
125 culturing was complete, the endoscope was reprocessed and could return to use the next
126 day with pending culture results; however, as endoscopes were preferentially cultured on
127 Fridays, the endoscopes were essentially out of circulation for approximately 48 hours.
128 Qualitative cultures were performed rather than quantitative cultures (either method was

129 acceptable per CDC/FDA Interim Culture Methods).¹⁵ The advantage of qualitative cultures
130 is that any positive culture is treated as potentially evidence of failure of reprocessing
131 and/or sampling, rather than assigning arbitrary thresholds for clinical significance. All
132 endoscopes with positive cultures are reprocessed, recaptured, and quarantined before
133 return to circulation. This contrasts with the quantitative cultures whereby only cultures
134 with >10 colony forming units of low concern organisms would be recaptured per CDC
135 guidelines.¹⁵ Culture reports were then automatically emailed on days 2 and 5 after
136 collection to both perioperative services/instrument processing and infection control staff.
137 If any cultures returned bacterial growth, the endoscope was quarantined and reprocessed;
138 the endoscope was not placed into circulation until repeat cultures returned negative.

139

140 *Cost analysis*

141 Comprehensive costs of the culturing program were evaluated including costs of
142 staff time, sampling supplies, culturing supplies, culturing, and reprocessing. Costs were
143 analyzed per endoscope per year and also as a total cost per year for our health system's
144 inventory of 20 elevator lever equipped endoscopes, including 8 linear array
145 echoendoscopes (Olympus GF-UCT180) and 12 endoscopic retrograde
146 cholangiopancreatography (ERCP) endoscopes (10 Olympus TJF-Q180V, 1 Olympus JF-
147 140F, and 1 Olympus PJF-160).

148 The Institutional Review Board at the University of Pennsylvania approved the
149 study.

150

151 **RESULTS**

152 *Retrospective review of CRE infections*

153 During the 4-year period from 2011 to 2014, review of clinical microbiology data
154 identified 17 patients with CDC National Healthcare Safety Network reported CRE blood or
155 abdominal infections. Of these 17 CRE infections, 10 were intraabdominal, 6 were from a
156 surgical site, and 1 was blood borne. None of these 17 patients had undergone a procedure
157 with an elevator lever equipped endoscope during the 36 months before their CRE
158 infection.

159

160 *Elevator lever equipped endoscope culturing*

161 From June 2015 to September 2016, a total of 285 endoscopes were cultured
162 including 110 cultures of LAEs and 175 cultures of ERCP endoscopes according to the
163 systematic elevator lever equipped endoscope culturing protocol (Figure 1). Of these, 3 out
164 of 285 (1.1%) cultures demonstrated bacterial growth: 2 with coagulase negative
165 *Staphylococcus* species and 1 with *Rothia* species. These were considered skin and oral
166 contaminants, respectively; however, these low-concern organisms can be associated with
167 infection in uncommon cases. One LAE and one ERCP endoscope had a positive culture
168 with coagulase negative *Staphylococcus* whereas a single ERCP endoscope had the positive
169 culture with *Rothia*. These endoscopes were quarantined, reprocessed, and then had
170 repeat culturing, which were negative for bacterial growth. The endoscopes were returned
171 to active use, and all subsequent cultures did not demonstrate any bacterial growth. The
172 three positive cultures occurred within the first 75 cultures and may reflect the early
173 experience in adherence to culture technique.

174 Of note, there were 2 patients who had documented CRE colonization detected as a
175 part of their standard clinical care who subsequently underwent ERCP. The endoscopes
176 used for these 2 procedures were reprocessed routinely, cultured and quarantined pending
177 the culture results. No evidence of bacterial growth was detected from either sample; the
178 endoscopes were reprocessed a second time and returned to circulation.

179

180 *Cost analysis*

181 The cost of the program includes staff time, the cost of sampling and culturing, and
182 the cost of additional reprocessing. Two staff members spend approximately 30 minutes
183 sampling each endoscope. In addition to this staff time, which amounts to \$49.00 per
184 endoscope, the supply cost of sampling is \$30.00 per endoscope (500 mL sterile saline
185 solution, 120 mL sterile urine specimen cup, sterile 60 mL lure-loc syringe, 15G x 1.5" blunt
186 tip fill needle, sterile disposable cytology brush, sterile gloves, bouffant hair coverings,
187 sterile gowns, face masks/shields, dry skin prep tray, and sterile table drape). The
188 laboratory cost for specimen processing is \$15.00 per culture, including technologist time
189 (an average of 10 minutes per culture) and materials (media, centrifuge tubes, and other
190 disposables). The additional reprocessing after culturing costs \$32.79 per endoscope,
191 which includes \$21.00 for 1 hour of staff time and \$11.79 for material costs (elevator brush
192 [\$1.09], channel brush [\$2.20], disposable cloth [\$0.44], detergent [\$3.75], disinfectant
193 [\$4.31]). The total cost of our program is estimated to be \$1,521.48 per endoscope per
194 year and \$30,429.60 per year for an inventory of 20 elevator lever equipped endoscope
195 (Table 1). Preferential sampling of endoscopes on Fridays allowed the weekend to
196 determine culture results and eliminated the need to expand on-site inventory.

197

198 **DISCUSSION**

199 Several recent duodenoscope-associated CRE outbreaks have prompted re-
200 evaluation of existing reprocessing and culturing practices.¹⁻³ Action plans have been
201 developed by the FDA, CDC, AGA, and ASGE, and among the different points addressed by
202 these plans, periodic culturing of elevator lever equipped endoscopes has been
203 recommended; however, a specific protocol and frequency for such culturing has not been
204 clearly defined.⁶⁻¹⁰ A multidisciplinary team from gastroenterology, infectious diseases,
205 laboratory medicine, and perioperative services developed a systematic elevator lever
206 equipped endoscope culturing program that was implemented at our institution in May
207 2015.

208 Expedited identification of contaminated endoscopes is of utmost importance as
209 tracing the source of transmitted multi-drug resistant organisms can often be challenging
210 and delayed. Additionally, the financial burden of an outbreak can be significant. Ross et
211 al¹¹ described Virginia Mason Medical Center's experience with an outbreak that ultimately
212 required aggressive reprocessing cycles, quarantine of duodenoscopes, and tripling of the
213 inventory of duodenoscopes. This experience highlights that the costs associated with
214 prevention or early detection of CRE transmission are small compared with the clinical and
215 financial costs associated with an outbreak.

216 The cost-effectiveness of any elevator lever equipped endoscope culturing program
217 must also be assessed. In a study by Almario et al,¹² the cost utility of different strategies to
218 prevent endoscopic transmission of CRE was largely dependent upon institutional CRE
219 prevalence. Given the current low pretest probability for CRE at most institutions, more

220 frequent culturing than is called for by the culturing program described in this study may
221 be unnecessary and incur additional costs with only marginal additional benefit. Costs
222 must also account for the removal of elevator lever equipped endoscopes from circulation
223 due to the sampling procedure and need for repeat reprocessing. The rotating nature of
224 this culturing program mitigates this operational cost because the maximum of elevator
225 lever equipped endoscopes temporarily removed from circulation at any given time is 25%.
226 Additionally, we preferentially performed endoscope sampling on Fridays to effectively
227 “quarantine” the elevator lever equipped endoscopes over the weekend pending the
228 preliminary culture results. Based on our very low rate of positive samples (1.1%) with no
229 identification of high-risk organisms, routine quarantine of elevator lever equipped
230 endoscopes pending culture results does not appear necessary at our facility. Ultimately,
231 the cost-effectiveness and feasibility of a program will likely depend upon institutional CRE
232 prevalence, elevator lever equipped endoscope inventory, and the availability of staff to
233 allow for allocation of work-hours for systematic sampling and culturing.

234 Although these efforts may aid early detection of contaminated elevator lever
235 equipped endoscopes and curb elevator lever equipped endoscope-related transmission of
236 infection, the underlying issue at hand remains the design of elevator lever equipped
237 endoscopes, specifically with the elevator channel posing a challenge for reprocessing. Re-
238 evaluation of reprocessing methods, instructions, and training are necessary to ensure
239 adequate manual cleaning and disinfection. Ross et al found that 1.9% of duodenoscope
240 cultures remained positive even after strict adherence to reprocessing and high-level
241 disinfection guidelines.¹¹ In a multicenter study, Brandabur et al¹⁶ collected daily post-
242 reprocessing surveillance cultures for elevator lever equipped endoscopes and had 5.0% of

243 cultures return bacterial growth. One area of interest includes decreasing the time
244 between completion of procedure and initial reprocessing, which may prevent the
245 development of an intractable biofilm that cannot be eradicated by standard reprocessing
246 measures.¹⁷ Ultimately, endoscope redesign to allow for enhanced access for cleaning may
247 be the most impactful intervention to eliminate elevator lever equipped endoscope-related
248 transmission of infection. Until such a redesign occurs, best practices, including decreasing
249 time to completion of reprocessing to prevent biofilm formation, may decrease the rate of
250 endoscope contamination as represented by positive endoscope cultures. In Brandabur et
251 al's study, it is noted that all manufacturer's recommendations are followed with a
252 resultant 5.0% rate of positive cultures. The lower rate of positive cultures seen in our
253 study (1.1%) suggests that there remain opportunities to improve manual cleaning and
254 reprocessing of endoscopes.

255 Patients and physicians should have the reasonable expectation that measures are
256 being undertaken to effectively eliminate the risk of elevator lever equipped endoscope-
257 related transmission of infection, which is a sentiment that is shared by many major
258 medical societies.^{18, 19} Ultimately, the goal of completely eliminating elevator lever
259 equipped endoscope-related infections will likely involve a multi-pronged approach which
260 will include the following: (1) education of staff at all levels regarding the importance of
261 strict adherence to reprocessing protocols, (2) determination of an optimal surveillance
262 culturing protocol, (3) monitoring of patients who have undergone a procedure with an
263 elevator channel endoscope, (4) development and validation of advanced sterilization
264 techniques, and (5) redesign of elevator channel endoscopes.

265 Our study has limitations that warrant examination. First, no outbreaks of elevator
266 lever equipped endoscope-related CRE transmission have occurred at our institution; thus,
267 the sensitivity of this systematic culturing program to identify CRE-contaminated elevator
268 lever equipped endoscopes cannot be directly assessed. Second, there were only 3 positive
269 elevator lever equipped endoscope cultures in our cohort, all of which were from non-
270 enteric organisms that were likely contaminants. However, culture-negative endoscopes
271 may still have clinically significant biological residue. Despite this potential gap, we believe
272 periodic culturing provides the most effective widely available tool to detect system flaws
273 that could increase the risk of transmission of infectious agents. Third, the cost analysis of
274 the elevator lever equipped endoscope culturing program does not account for the
275 purchasing of additional elevator lever equipped endoscopes, which may be required at
276 some institutions. We had a sufficient supply of elevator lever equipped endoscope such
277 that additional endoscopes did not need to be purchased to make up for those held for the
278 culturing and reprocessing protocol. Institutions seeking to adopt this culturing program
279 will need to assess if their inventory would allow for the periodic temporary removal of
280 25% of elevator lever equipped endoscopes from circulation.

281 In summary, this 16-month evaluation of a systematic elevator lever equipped
282 endoscope sampling and culturing program identified a low rate of positive cultures after
283 reprocessing. These positive cultures were associated with non-enteric microorganisms,
284 which are believed to be contaminants. The program was determined to be of modest cost,
285 identified reprocessing procedures that may have led to a low rate of positive cultures, and
286 was successfully implemented at multiple sites within our health system. The favorable
287 findings support our emphasis on processes to decrease the time between completion of

288 procedure and initial reprocessing and the thoroughness of mechanical cleaning, which
289 may prevent the development of intractable biofilm that cannot be eradicated by standard
290 reprocessing measures.

291

292 REFERENCES

293

- 294 1. Epstein L, Hunter JC, Arwady MA, et al. New Delhi metallo-beta-lactamase-producing
295 carbapenem-resistant *Escherichia coli* associated with exposure to duodenoscopes. *JAMA*
296 2014;312:1447-55.
- 297 2. Wendorf KA, Kay M, Baliga C, et al. Endoscopic retrograde cholangiopancreatography-associated
298 AmpC *Escherichia coli* outbreak. *Infection control and hospital epidemiology* 2015;36:634-42.
- 299 3. Kola A, Piening B, Pape UF, et al. An outbreak of carbapenem-resistant OXA-48 - producing
300 *Klebsiella pneumoniae* associated to duodenoscopy. *Antimicrobial resistance and infection*
301 *control* 2015;4:8.
- 302 4. Guh AY, Bulens SN, Mu Y, et al. Epidemiology of Carbapenem-Resistant Enterobacteriaceae in 7
303 US Communities, 2012-2013. *JAMA* 2015;314:1479-87.
- 304 5. Chapman CG, Siddiqui UD, Manzano M, et al. Risk of infection transmission in curvilinear array
305 echoendoscopes: results of a prospective reprocessing and culture registry. *Gastrointest Endosc*
306 2017;85:390-397.
- 307 6. US Food and Drug Administration (FDA). endoscopic retro- grade cholangiopancreatography
308 (ERCP) duodenoscopes: FDA safety communication - design may impede effective cleaning.
309 Available: www.fda.gov/Safety/MedWatch/SafetyInformation/SafetyAlertsforHumanMedicalProducts/ucm434922.htm. Accessed
310 September 26, 2016.
- 312 7. US Food and Drug Administration (FDA). Brief Summary of the Gastroenterology and Urology
313 Devices Panel Meeting, May 14-15, 2015. Available: www.fda.gov/downloads/AdvisoryCommittees/CommitteesMeetingMaterials/MedicalDevices/MedicalDevicesAdvisoryCommittee/Gastroenterology-UrologyDevicesPanel/UCM447407.pdf. Accessed September 26, 2016.
- 317 8. Centers for Disease Control and Prevention (CDC). Interim duodenoscope surveillance protocol.
318 Available: www.cdc.gov/hai/organisms/cre/cre-duodenoscope-surveillance-protocol.html. Accessed September 26, 2016.
- 320 9. American Gastroenterological Association. AGA press release: recommendations from "getting
321 to zero": first meeting of regulators, endoscope manufacturers and gastroenterologists.
322 Available: www.gastro.org/press_releases/2015/3/23/how-to-stop-duodenoscope-infections. Accessed September 20, 2016.
- 324 10. American Society for Gastrointestinal Endoscopy. Transmission of CRE bacteria through
325 Endoscopic Retrograde Cholangiopancreatography (ERCP) Interim Guidance. Available:
326 www.asge.org/home/about-asge/newsroom/transmission-of-cre-bacteria-via-ercp. Accessed
327 August 18, 2016.
- 328 11. Ross AS, Baliga C, Verma P, et al. A quarantine process for the resolution of duodenoscope-
329 associated transmission of multidrug-resistant *Escherichia coli*. *Gastrointestinal endoscopy*
330 2015;82:477-83.

331 12. Almario CV, May FP, Shaheen NJ, et al. Cost Utility of Competing Strategies to Prevent
332 Endoscopic Transmission of Carbapenem-Resistant Enterobacteriaceae. *The American journal of
333 gastroenterology* 2015;110:1666-74.

334 13. Gazdik MA, Coombs J, Burke JP, et al. Comparison of Two Culture Methods for Use in Assessing
335 Microbial Contamination of Duodenoscopes. *Journal of clinical microbiology* 2016;54:312-6.

336 14. Olympus Corporation of the Americas. Cleaning and Disinfection Checklist. Available:
337 [medical.olympusamerica.com/sites/default/files/pdf/TJF-
338 Q180V_ReprocessingEvaluationChecklist1.2.pdf](http://medical.olympusamerica.com/sites/default/files/pdf/TJF-Q180V_ReprocessingEvaluationChecklist1.2.pdf). Accessed: November 5, 2016.

339 15. Centers for Disease Control and Prevention (CDC). Interim Duodenoscope Culture Method.
340 Available: www.cdc.gov/hai/settings/lab/lab-duodenoscope-culture-method.html. Accessed:
341 November 5, 2016.

342 16. Brandabur JJ, Leggett JE, Wang L, et al. Surveillance of guideline practices for duodenoscope and
343 linear echoendoscope reprocessing in a large healthcare system. *Gastrointestinal endoscopy*
344 2016;84:392-399.

345 17. Pajkos A, Vickery K, Cossart Y. Is biofilm accumulation on endoscope tubing a contributor to the
346 failure of cleaning and decontamination? *The Journal of hospital infection* 2004;58:224-9.

347 18. Petersen BT, Koch J, Ginsberg GG. Infection Using ERCP Endoscopes. *Gastroenterology*
348 2016;151:46-50.

349 19. Tokar JL, Allen JI, Kochman ML. Getting to Zero: Reducing the Risk for Duodenoscope-Related
350 Infections. *Annals of internal medicine* 2015;163:873-4.

351

FIGURES

Figure 1. Systematic endoscope culturing process. A. Each week, 25% of the inventory of elevator lever equipped endoscopes is selected to be sampled and cultured. B. Elevator lever equipped endoscopes are cultured based on CDC guidelines by two trained staff members using aseptic technique. C. On days 2 and 5, culture results are reported. D + E. If the culture for an elevator lever equipped endoscope returns with no growth, the elevator lever-equipped endoscope remains in circulation. F + G. If an elevator lever-equipped endoscope has a positive culture result, the implicated elevator lever-equipped endoscope is quarantined and repeat cultures are obtained.

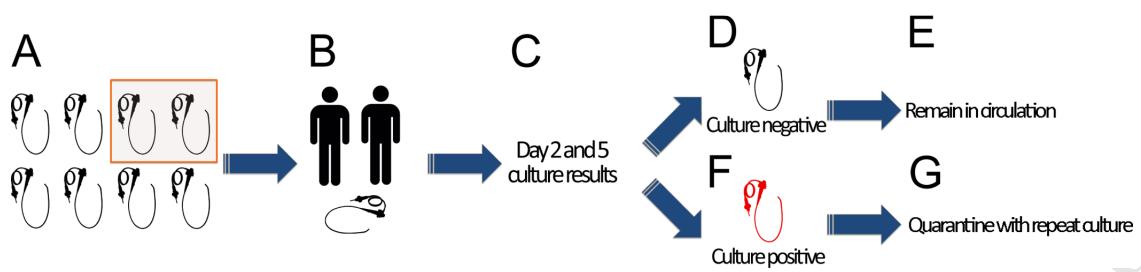
CDC = Centers for Disease Control and Prevention

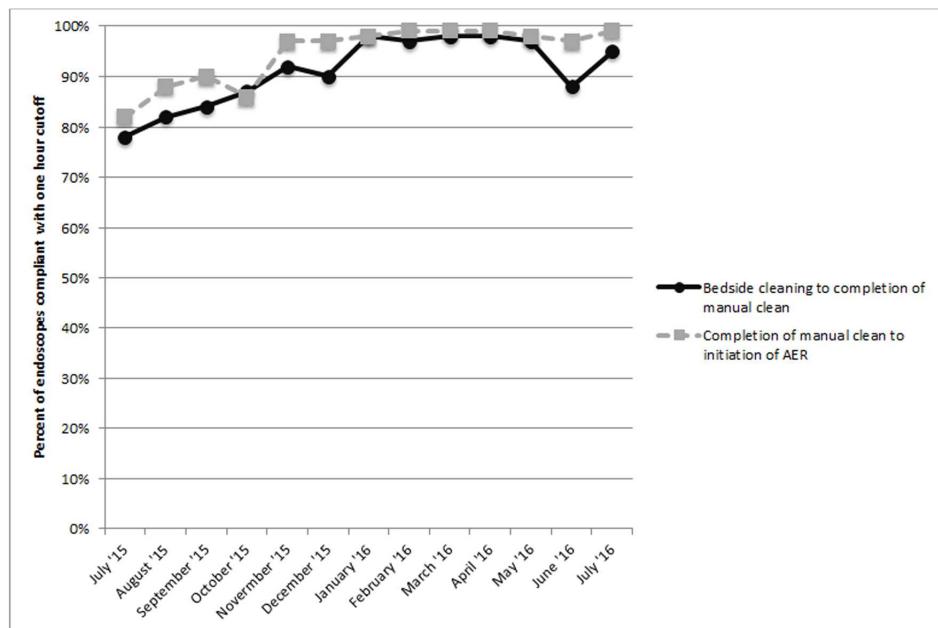
TABLES

Cost per endoscope culture	
Staff (30 minutes x 2 trained staff)	\$49.00
Sampling/culturing supplies	\$30.00
Culturing process	\$15.00
Reprocessing costs per endoscope	
Staff	\$21.00
Reprocessing supplies	\$11.79
Total per culture/reprocessing cycle	\$126.79
X 12 cultures per year	\$1,521.48
X 20 elevator lever equipped endoscopes	\$30,429.60

Table 1. Costs associated with culturing program

SUPPLEMENTAL


Supplemental Figure 1. Adherence to endoscope reprocessing best practices. The percentage of endoscopes completing two different steps of endoscope reprocessing within one hour for individual months from July 2015 to July 2016. The trend line with circular markers represents the percentage of endoscopes that successfully completed manual cleaning within one hour after completion of bedside cleaning. The trend line with square markers represents the percentage of endoscopes that successfully initiated AER within one hour after completion of manual cleaning.


AER = automated endoscope reprocessing

MATERIALS AND REAGENTS	
Sterile solution for irrigation (500mL bottle)	
Sterile urine specimen cup (120mL)	
Sterile 60cc lure-loc syringe	
15G x 1.5" blunt tip fill needle	
Sterile disposable cytology brush	
Sterile wire cutters	
High-level disinfected red suction button, blue air-water button, and black biopsy cap	
<i>Additional materials:</i> sterile alcohol pads, bouffant hair coverings, sterile gloves, sterile gowns, face masks/shields, dry skin prep tray, sterile table drape, specimen labels	
DEFINITIONS	
Lowered/Closed position	Notes the position of the elevator forceps being parallel or within the elevator channel relative to the distal end of the duodenoscope
Raised/Open position	Notes the position of the elevator forceps being perpendicular to the distal end of the duodenoscope
PREPARATION OF MATERIALS	
1	Disinfect the surface of the back table with a PDI SaniWipe with 3 minutes of contact time
2	Perform hand hygiene with alcohol hand rub or antimicrobial soap and water
3	Don sterile gowns, face masks/shields, hair covers, and sterile gloves
4	Drape back table with a sterile table drape
5	Prepare the sampling materials by laying out the sterile sampling containers as well as other needed sterile items: 60cc syringe, wire cutter, sterile disposable cytology brush, dry skin prep tray, red suction button, blue air-water button, 5cc sterile syringe for use with linear array echoendoscopes. Pour 200-300mL of 500mL sterile saline solution for irrigation into dry skin prep tray reservoir.
6	Prepare duodenoscope <ul style="list-style-type: none"> - Place red suction button on the suction port - Place blue air-water button on air-water port

	<ul style="list-style-type: none"> - Place black biopsy cap on biopsy channel - Close water-resistant cap on end of duodenoscope - Remove "Clean" tag from duodenoscope
BRUSH ELEVATOR FORCEPS AND CHANNEL	
7	Open sterile alcohol pad for use
8	Sanitize outer surface of duodenoscope tip with sterile alcohol pad. Do not wipe elevator forceps and lens face at distal end that will be sampled with cytology brush; allow alcohol to air dry before sampling
9	Place duodenoscope on sterile draped back table
10	Using the controller, set the elevator forceps in the raised/open position
11	Using the cytology brush, firmly sample under the elevators forceps in the raised/open position and scrub the face of the lens
12	Using the controller, set the elevator forceps in the lowered/closed position and orient the distal end relative to the person sampling for optimal sampling
13	Dip the cytology brush into the sterile saline solution
14	Using the pre-moistened cytology brush, with twisting motion of the brush, sample the inside of the elevator forceps and channel in the lowered/closed position
15	Pass the cytology brush into the distal end of the elevator channel and advance until slight resistance is encountered (~120cm)
16	Remove the cytology brush from the channel and position the brush above the mouth of the specimen container
17	Using wire cutters, cut the wire above the bristles and just below the plastic sheath. The brush should fall into the specimen container. Place lid on specimen container.
FLUSH BIOPSY CHANNEL	
18	Fill 60cc syringe with 50mL of sterile irrigation saline solution. Place 15G x 1.5" blunt fill tip needle on tip of 60cc syringe
19	Insert the blunt tip fill needle with saline solution-filled syringe into the black biopsy port cap
20	Coordinate how to hold the duodenoscope at the optimal angle to flush the biopsy channel and to collect the sample in the specimen container
21	Flush the biopsy channel with 50mL of sterile saline solution to collect sample in the sterile specimen container that contains the brush head. Flush the biopsy channel two times each with 20-30mL of air from the 60mL syringe to ensure that all the fluid is flushed from the biopsy channel.
22	If applicable, attach auxiliary channel adapter to the elevator wire channel inlet
23	Using a 5cc syringe with 5mL of sterile saline solution, flush saline solution into the same specimen jar as above. Repeat flush a second time with an additional 5mL of sterile saline solution into the same specimen jar.
24	Flush using a 5cc syringe with 5mL of air into the same specimen jar. Repeat flush a second time with an additional 5mL of air.
25	Tighten the lid to the specimen jar, label the specimen (i.e. endoscope type [ERCP versus linear array echoendoscope], serial number), and place container in a specimen bag. Place clinical microbiology requisition in specimen bag.

Supplemental Table 1. Duodenoscope sampling method.

Acronyms and Abbreviations Used

AGA = American Gastroenterological Association
ASGE = American Society for Gastrointestinal Endoscopy
CDC = Centers for Disease Control and Prevention
CRE = carbapenem-resistant *Enterobacteriaceae*
ERCP = endoscopic retrograde cholangiopancreatography
FDA = Food and Drug Administration
LAE = linear array echoendoscopes